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A REVIEW OF CHARACTERISTIC METHODS USED Tt SOLVFE
THE LINEAR TRANSPORT EQUAT ION*

Raymond E. Alcouffe and Edward W. Larsen
Theoretical Division
University of California
Les Alamos National Laboratory
Los Alamos, New Mexico R7545 USA

We review a rselection of characteristic methods used to solve the linear
transport equation. Characteristic methods are bhased upon the solution
of the transport equation written in the form

“Unls - s, s “Ols - ')
P(s) = u;(so) e ’ +f QL") e dt!
q

"0

where s is are leagth along the characteristic,

The methods of solution distinguish themselves in how the characteristics
used tour computation are selected and how the source term is approeximnated,
We conclude by recommending criteria upon which a production methoa should
e based.

“Ihis work was performed under the auspices ot the U.S. Department of
Energy.



A REVIEW OF CHARACTERISTIC METHODS USED TO SOLVE
THE LINEAR TRANSPORT EQUATION

1. INTRODUCTION

During the past two decades several methodr have bheen proposed (an< many
fewer implemented in production codes) to solve the multidimensional
neutral particle linear transport equation. In this review we discuss
two classes of such methods and concentrate on one class, called
"characteristic" methods. In the following we shall describe these two
rlasses and set up a framework from which we define and compare the
various characteristic methods found in the literature,

To begin, we assume that the trunsport equation has been cast in a multi-
group, discrete-ordinates approximation which is to be solved by source
iteration. This nrocedure is the most prdactical one for multidimensional
problems, and is widely used in production computer codes. Thus, with no
loss of generality we may consider the one-group transport equation in a
region R with a non-reentrant houndary 9R:

Q"l’(_lj.(_)) + OT(r) "l’(rl‘_?) = Q(rp“) ) (l)

Q(r,) = IG(E,Q°Q') W, Q') d' o+ S(r, ),
where

reR

(! is the direction »f particle travel,

O is the total cross section,

o(r,*1') ix the scattering cross section assuming an isolropic
medium,

S(r,Q) is an arbitrary (nonnegative) scarce.

The boundary condition is

Pp(r,2) = b(r,Q) ' rcoR, Qeon <0,

where nois the outer novmal at r.

We note two features of Eq. (1) which greatly impact tae accuracy ot the
methods  discussed below, First, the scattering integral couples  all
angles at the local space point r. The local-ness of this conpling con-
trasts with the second feature,  The "streaming” term can he written
1 the form

ds

eV g(r,Q) =



where s is arc length along the straight line through r ia the direction
Q2. Thus, the equation

dy _
T
implies
W(r,Q) = y(r + sQ,Q) ,

which states that the value of the fJux at point r in the Jirection Q
depends upon the value of the flux at any other point on the line through

in the direction 2. We view this as a "non-local"” contribution to the
tlux. These properties of local and non-local contributions to the
flux at point r distinguish our two classes of methods of solution
to the transport equation.

The first class of methods is actually based upon the local property of
the scattering integral; the non-'ocal nature ol the transport term is
accounted for in  an approximate way. In this «class a  (generally
orthogonal) spatial coordinate system appropriate for the system at hand
is usced to express the operator Q-V, a grid of points defining mesh cells
in the phase space (r,Q) is selected, and a balance equation “abtained by
integrating Eq. (1) over a cell) is used toe sumulate the aifferential
cquation. (This assures particle conservation and leads to straight-
forward iteration acceleration methods which are essential in svaltering-
dominated  or  ecigenvalue problems.) In  such methods the scattering
integral is  readily evaluated by a quadrature rule; this invariably
serves  as o oan exeellent approximation.  However, the streaming term in
Ey. (1) generates a surface integral in the balance equation, and thig
is approximated by a finite difference or finite element method.  The
accuracy of this approximation is severely limited by the size of the
mesh in multidimensional problems!.  As a rule this class of methods
(which includes the diamond difference and lincar discontinuouns methods)
perform:. well for problems in which the scattering terms are important
(this includes most reactor systems). It performs the worst in streaming
problems (vith regions of vacuum or very low cross section) and in deep
penctration  (shielding) problems  where  computing  resources  novmlly
require the size of the mesh to be large in mean free paths.

The scecond class of methods we c¢nall "characteristic” methods.  Sitnce these
methods are the main thrust of “his article, we shall describe them in
more detail. To display the geueral philcesophy behind these methods, we
invert the "streaming plus collision" operator on the left side of KBy, (1)
and pet

=0, 8

W) = lll(ro,n) o
(N

N

-UTL
] J. e QCr - W) dt
0



where

£=£0+89 '

and where, for simplicity, we have assumed OT = constant,

Thus, along each characteristic we have handled the non-local transpe-t
term exactly; the problem now is to evaluate the integral term in Eq. (7).
An associated problem is that we frequently want the solntion to the
problem at every mesh point in the medium. This can be formally done by
passing characteristics through every point in the system for every
direction Q, but the practicality of numerical solutions requires that
¢s few a number of characteristics be taken as possible for an "adeguate"
solution. This can place constraints on how the mesh points are chosen.
Thus, must of the eftort in devising an accurate characteristic method lies
in choosing the mesh points and in representing Q.

Generally, this second clazs of methods is most uselul and accurate when
the scattering integral is not as important as the streaming term. ilis
vecurs in streaming aad deep penetration problems, vhere meshes are large
and  scaltering is small. Also, we note that il Q(s) - 0 in Eq. (2),
then Wir,M » 0. ‘Thus methods based on Fo. (2) will be positive provided
the boundary and internal sources are positive,

In the ext section we derive characteristic methods, using Eg. (2) as a
starting point, and we show how various authors have tackled the problem
ol the selection of mesh points and cevaluation of the scattering integral.
Included are two methods which seek to combine teatures of hoth classes
ol methods discussed above, In Sec. 111 we ofter some rvecommeadat ions
tor further research in this area.

. CHARACTERISTIC METHODS FOR MULTIDIMENSTONAL PROPYEMS

To give a unitorm presentation of the various characteristic methods tound
in the literature, we shall take some liberties in anterpretinog ecach
author's development ot his methed.  Specitically, we contider one proup
ol o multigroup problem, we assume that  the solution is obtained by
iteration on the scaticting source, and 2 restrict ourselves to (x,v)-
prometry., (The characteristice in (x.v)=coordinates are straipht  lines,
which facititates display of the metho's ) The characterists. metholds
mihe usc of g spatial coordinate svstem and o prid of points an v oand
W, just as in the tirst class of methods.  However, cach characteristic
method ditters ir the selection of the grid and in how this grid f1ts nto
the operational aspects of the method,

11.A The Method ot Takeadhi

Thiz  method  has  been  develaped  in (ry7z) geometry by K. Takeuchi=™
and  is alse outlined by  Campbell®, (Takenchy has used  the  method
exclusively  tor  shieldiog  preblems.) We o refer Lo Figure 1 in
whnch  one mesh cell  in () peometry  in displayed, In  Takewchi's
method the fluxes ot the mesh vertex pointa are the principle unknowns,
The divect,ons (8 of the characteristics are chosen independently ol the



spatial mesh and can in fact be any of the quadrature sets presently incor-
porated in S codesS. Figure 1 displays a representative characteristic
ray which passes through the verten point D in the direction Q and
intersects the boundary at point E. In the direction shown, tne flux is
known at points A,B, and C, the source is known at points A, B, C, and D,
and we wish to determine the flux at point D. Eq. (2) implies

-oTl -oTt
w(D,Q) = Y(E,Q)e + e QL) dt (3)

where 2 is the length of the line segement DE. The value of the flux at E
is obtained by linear interpolation, i.e.

lP(l:,‘_}) = ["P(A.Q) + (1 - P) y(B,Q2) ,

where

- kp
P=

and where poand npoare the direction cosines of (1 in the x and y directions
and h and k are the cell dim asions in the x and y directions. (The
location of the point E in Fig. | implier 0 «~ p « 1.) To evaluate the
integral term in Eq. (3), the source Q(¢) is assumed linear in s alorg the
characteristivs, i.e.

Qs) = ; QD) + (1 - ’;) Q(E)

Again, the source at E is interpolated trom those at A and B Lo obtain
QUE) = pQA) + (1 - p) (B

This method thus consists of a vertex-to=vertex evaluation.,  Since the
angles of the characteriotics are arbitrary, the method i very tlexible
and is reahily extendable to any geometry and mesh arvangement.  Alko,
since  the approadmations in  the method are due only to  lincar
interpolations, the method is inherently positive.

Somes basic questions concerning this method are posed below,
(i) How should the spatial mesh be selected?

(i} Now many characteristics are sufficient?  (In other words, how
should the angular quadrature set be chosen?)



(iii) Is linear interpolation sufficient?

(iv) Is a linear representation of the source along a characteristic
a goo: one?

We give the following comments to these quetstions in reverse order:

(iv) Our experience in one-dimensional slabs? has shown that a linear
(versus a constant) representation of the source is essential for
accuracy in characteristic methods. We note that Sasamoto and
Takeuchi have considered exponential (rather than linear) varia-
tions in the source and have reported excellent resultsd,

(iii) Since the values of the fluxes and sources are known at  the
vertices, a higher-order interpolation such as splines or otLher
polynomials incorporating points from adjoining vcells could be
used to check the adequacy of linear interpolation. However, the
solution of the discrete-ordinates equations has o discontinuous
first deiviative across "singular characteristics’ which emanate
from cvery corner of every material region in crery discrete:
ordinate direction in malti=dimensional geometries, and higher-
order interpolation schemes requiring greater  smoothness  than
actually exists  in the transport  equation  solntion  may  be
inappropriate.

(ii) The question ol an adequate number ol characteristics  (i.e.,
directions in the quadrature set) can probably only be answered by
experiment .,

(i) [t is cusential to pick large meshes in regions where the scat-
tering source is zero ar very small so that the linear boundary
interpolations do not overly degrade the solution.  The reraining

meshes should be on the order ol a mean free path.

In general, pie .se answers to Lhe above questions ¢an be obtained only
by a carctul and experimental test program.  Takeuch did undertake such a
program in Ret. 4, but mosi of his results are stated toy one-dimensional
slabs., In our opinion these results are not necessarily indicative !
those in multidimensjons because of (he special smoothness of the solutrens
in slab geometry,

I is now appropriate Lo make another comment.  Takeuchi's method does
ot seem Lo gatisty a balanee equation, and hence peutron conservat fon
is not strictly enptorced independently of mesh size0 For example, the
angle=integrated balance equation tor a mesh in (x,v)-geomet vy (referring
again in Fig. 1) is wiatten

M AL, CDAB ,
T I (41



where

¢o = ff ll’(!.Y.‘D dx dy dQ ’
cell

Q =ff Qx,y,Q) dx dy 4 (s)
cell

D

J:D = ff wp(l,y,Q) dy d ote.

B

In analogy to Eq. (4), one could imagine a relationship from the solution
of Takcuchi's method such as

A

1 B D 1 1 C )] |
2 (Jx * Jx) T2 (Jx '

(J'+J)

C
+ Jx) Yo v y 2 'y Ty

n C

. °1"'7’A I R R

where the quantities here are analogous to those defined in Eq. (5), but
evaluated at the vertex points.  However, there is no guarantee that this
tur o related) ecuatjon s ever satistied,

By contrast, it has historically been considered crucial tor purposes
of iteraticn acceleration methods ol accuracy  that numerical methods
in the ftirst class discussed in Sec. | (soch as diamoua difterence and
Lincar dascontainuwour) satisty a cell balance equation,  In tact, we have
pointed out an See. | that the cell bhalance equation is the  basia
ingredient in these methods,  In Takeuchi's methoa, however, this equation
1n vompletely absent,

LB The Method of Wagner = Sirgis = Cohen

This method is described in Ret. 8 and extended sowmewnat on Ret.o 95 gt
was developed Lo solve general (x,y,a2)=geometry problems having o uniform
spatial grid. We describe this method in (x,y)=geometry by means ot Vig, 2.
Apdgin in order to resulve the source and caleolate g local tlox, this
method resorts to o grad of points.  The spatial grad s requitod to toja
g unitorm mesh of rectangles such that the height k and width h are the
sae for each mesh cell.  As we show an Fig. ', only certain directions
through  the mesh are chosen as characteristic vays; these ae the ones
that pass through the vertices of the rectangles along the diagonals and
through the centeyr of the edges in the horizontal and vertical directions.
This restriction on the characteristicas along with the use of a uniform
mesh ol lows the computation of the flux without interpolations .ond with a
mnimmm of computational effort since the same exponential factors ase nked
in every cell  dn cach materiatl  region for attemnation  along  the
clivacteristicon, In Ref. 9 a scheme s mentioned wvhich aelaxes the
requiremeat of a uniform mesh by a spatial interpolation, but details are
ol givenl 50 we shall not digcuss this moditication here,



The essential feature of this method which distinguishes it from Takeuchi's
is that the source is taken to bhe constant throughout each mesh cell; the
source integral is Lhen readily evaluated for each characteristic. 1n the
source iteration procedure, a method to compute the source is described
which uses a balance equation similar to Fy. 4. 'This bhalance equalion
defines the cell-average scalar flux from which the constant source is
computed.

In summary, this method is positive, simple, and presumably computationally
tast. It appears to be most useful for deep penetration problems that can
be described by a uniform rectangular mesh where the source contribution is
small. The accuracy is limited because of the assumption of a constanl
source in each mesh and the restrictions on the characteristic directions
uscd. The constant source assumption implies that very small mesh cells
are required when scattering is an important conlribution Lo the source
and the restriction on the characteristic directions implies that general
streaming in the void regions cannot be accurately calculated. However,
this method's value lies in rapidity ol calculation and the method should
seive as a4 benchmark for assessing the impact of relaxing Lhe restrictions
upen the class of problems il was designed to solve.

Al tirst glance it appears that another restriction on methods which
procerd  from vertex to vertex is that the characteristics be straight
lines in the problem coordinate system. llowever, Askew has  developed
g method which tor cylinders and spheres works on the same principles
discussed above,

11.¢ The lethod of Askew

This method, woriginally Tormulated by Askew!", has been  expanded Lo
handle  geuneral problems lor a variety of one- and  two-dimensional
prometrical situations'1-19, Askew's method, although developed  inde-
pendently,  takes  ingredients  from  the methods described  above, In
Fig. ' we display some o! the aspects of the method ftor a rectangular mesh
cell,  We show three cqually spaced characteristic rave passing through
the « 11 in an arbitrary direction .  The characteristics peed not be
cqually spaced, but for practical reasons'? this restriction has heen
imposed  on the wmethod.  The initial values ot the tlox an direction
) are given at the points at which the characteristic rays enter the cell;
the tlux at the points at which the rays exit the cell is evaluated
trom Lthe characteristic solution (Eq. &Y. The sowrce in assumed constant
tn the mesh cell as in the previous methed,  In order to compute the flux
Plr.a) trom which the source is evaluated, the tolloving procedure s used.
Fach ray passes through the "center" of a volime as 1t sweeps Chrough
the cell and in the example this volume is

AL,
m i

where 6A  is the spacing for angle m and ¢, is the length of the (i-th)
ray vasding through the cell.  in gvurruﬁT Lthe total voluwee swept by
rayh passing through the c¢ell is not equal te the physical volume of the
cell, and so cach track length throuph the ool is moditied au



2' - vcell
im im W Z: 6A 9,

m m jm
m j€ cell

where w_ is the angular weight.

Thus these modified "track lengths" will yield the correct cell volume
wvhen weighted and summed over all the characteristics passing through the
cell. The motivation for doing this is to cnsure necutron balance for
the cell (and consequently the system). This balance is ensured by using
the balance equation (Eq. 4) to compute che cell-average scalar flux which
is then used to compute the source. This procedure is much the same as
described for Wagner's method. A similar procedure is implemented for
preserving balance in curvilinear geometries and is described in detail in
the references.19713 Also detailed there are criteria for choosing the
characteristics (i.e., their spacing and the angles), the impact of
reflectiny and periodic boundary conditions, considerations of non-constant
o in the cells (i.e., cells which contain non-rectangular subregions), and
iteration acceleration procedures to converge the scattering source and
to sclve eigenvalue problems.

This method of characteristics has been implemented in  impressive
gencrn]ity’z, and yct there are some attendant difficultics with it.
Because the source is assumed constant it is necessary tu take small
mesh cells, on the order of a scattering mean free path, when Lhe
scattering contribution is large. In curvilinear geometries the manner
of choosing the characteristics leads to many evaluations of the flu* in
the outer regions of Lhe system, which is quite inefficient. This is
clearly explained by Cumpbell®, who presents a remedy for this.
(Campbell's "long characteristic" meLhod is similar to Askew's method).
Another method which is similar is displayed next.

I1.D The Streaming Ray Method of Filipone

Filippone's general-purpose (x,y)-geometry streaming ray method!4,15 jg
an attempt to develop a hybrid method: onc which iakes attributes of
the class of characteristic methods and attributes of the local mesh methods
and combines them into a single method. To describe this method we again
refer to Fig. 3. As in Askew's method, equally spaced characteristics in
a given direction R are drawn which intersect Lhe rectangular region.
However, the problem is split inlo two parts; onc part solves along the
characteristics with the source assumed to be zero, and the other part
solves Lhe source problem in the rectangular region via a diamond
Jifferenced approximation with zero incoming Dboundary conditions.
Mathematicallv we describe this as follows: Assume

o(r,2) = 90,0 + WS,

where

0-w + g b° = 5(r,Q) (6)

wc = 0 on the incident faces .



Now solve Equation (6) via diamond differencing on the rectangular mesh to
obtain

where i denotes a characteristic and ¢in,i‘ ¢oul,i

evaluated at the intersection of the ray with the rectangular mesh at the
incoming and outgoing boundary, respectively.

are the fluxes

e 0 . :
The average characteristic flux for the cell, Y. , is obtained by

volume~-averaging of the average tluxes along each streaming ray. Thus the
total solution is

_ .C 0
IJ’a\.r - ¢av t wnv
_,0 'y
ll’out,i - lI"out.,i by

where w; is the appropriate outward houndary f{lux from the diamond
solution.

As implemented, this method assumes a unitform spatial mesh and special
Guadrature sets to minimize the number of coxponential caleulations. |t
also assumes a constant source, whose drawback we have already commented
on, but Lthis source is used in a diamond asense and may not be as severe
a restriction as in the other methads.  OfF o potentially moce serions
nature, the method does not explicitly satisfy a balance cowdition. On he
other hand, the method is atrictly positive because of the zero boundary
conditions for the diamond solution. Also, the angular discretization for
the diamond solution can usually be chosen to be much less thav that for
the characteristic solution. The reason for thiz isx thal in a source
region the flux will generally be nearly isotropic and the angular
vorrections duc to the boundary condition will presnmably be picked up
by the characteristic solivtion oun the finer angular discretization. This
consideration is important because streaming in void regions can be
handled quite nicely and efficiently in an accurate way (note that the
diamond solution will be zero in voids). Further details on thi. method
and its calculational results are presented in the third paper of this
session,



11.E The Linear Characteristic Method of Larsen

The general-purpose, (x,y)-geometry linear characteristic method®’i/
again is an attempt to more consistently utilize the advantageous
nroperties of the two classes of methods. We usec Figure 1 Lo jllustrate
the essential points. First, the characteristic equation (2) is solved
explicitly for all points in the cell for the angle Q, assuming linecarly
varying boundary conditions along the bottom and left edges of the cell
and a source linear everywhere in the cell. The outgoing cell boundary
fluxes requirrd for tLhe boundary conditions of the adjoining cells
are eva.uated from Lhe analytic solution. The ccll-averaged fluxes,
required for constructing the source for the next iterate,
are ecvaluated from neutron balance considerations. The details on this
method are given in Ref. 18.

Thus the source term is handled much the same as u mesh-oriented code
would and the transport from cell Lo cell is approximated by boundary
averaged terms rather than point values. From Lhe perspective of methods
denoted ¢ and D above, this method "fills" the cell with characteristics
at angle Q but smears out the cell to cell communication by using
houndary averages.

The advantages o! *he methnd lies in its simplicity, which is reflected in
computational efficiency!®, Also, it is mathematically clea.s in whal sense
the method is  approximating the original difterential equation, -nd
neutron balance is rigorously assured. The algebraic simplicity orf the
method takes advantage of the fact that the characteristics are straight
lines in (x,y)-geometry. In curvilinear geometrv the analytic solutijon
it  the curvilinear coordinates is nol &simply expressed, and  hence
computational efficiency would require the storage of o lLarge amount of
data for solution.

111, RECOMMENDAT [ONS

It is apparent that many rescarchers  have  found  the  method ol
characteristics usetul for solving certain classes of transport problems,
In our view these are the problems in which the streaming term dominat es
the gource contributjon, such as In voids or deep penetration problems.
The CACTUS code!? does have the capability of solving a vide variety of
problems, including cigenvalue problems, and its geometric flexibility is
closer to that of Monte Carlo codes than any other code that has cume to
our attention, lHowever, we i CACTUS ax a special-purpose code becanse
it appears Lo be much less efficient in terms of computer resources than
other peneral purpuse transport codes which solve cigenvalue and shiclding
problems®' 19, We de believe  that  an efficient  characterintic
method can be developed for a general-purpose transport code,  To do this
will, however, involve additional rvescarch which we have divided into the
following three arveas.

IH1.A Balance Equation

Our  experience  in developing methods  to solve and  accelervate  the
solution ot  the transport equation Indicates that  having a  balance
cauat fon appropriate to the method leads to an increase in acenracy and
in the effectiveness of iteration acceleration schemes.  The  methods
of Wagner and of Askew and the linear characteriatic method do dalisty
a balance equation.  Such an equation tor more general wmethods should be
formulated and incorporated.



I1I.B Representation of the Source

All of the methods discussed in Scction il make use of a mesh in the
problem coordinate system to form the source. It is our experience that
at least a linear representation for the source is necessary for an
accurate characteristic method, especially for large meshes'?'i®,
Thig at-least-linear representation alsc seems to be nceded to satisfy the
diffusion limit for scattering-dominated problems. Whether this repre-
sentation is best done in the problem coordinates or striclly along Lhe
characteristics (as in Takeuchi's method) is an open yuestion.

111.C Geometric Flexibility

A final distinguishing aspect of the methods displayed in Section Il is
the flexibility allowed in  the placement of the calculational
characteristic rays to solve the transport problem. In Wagner's method
there is a minimum of [lexibility since the spatial mesh determines the
allowed directions for the characteristics. Askew and Filippone relax
this restriction somcwhat, although they prefer a regular placement of
the charzarteristics (e.g. equal spaciug, a fixed number per cell, otce))
Tokeuchi's method places no restrictions; any direction can be chosen
and the necessary cell boundary data ace supplied by interpolation.  The
merit in the method: which depend on a uniform mesh s that o minimum
amount of data needs to be computed and stored to allow the method te be
vectorized.,  The implication here is that a vectorizable caleulational
methad will ultimately be mact efficient,  In a vectorized mode one must
have no cell=by=cell decisions made during calculation; this rles onl
methods  based upon interpolation. On *he other hand, intcerpolation can
lead Lo a more accurate method with a ziven number ol mesh points,  Thus
sume  conpromisce or melding of the twe approaches conld be optimum -
perhaps along the lines implicit in Filippone's method,

In conclusion, the 1-2thod of characteristics has Lthe promise ol leading
to (but has not yet produced) a gencral=purpose method which alleviates
many of the difficulties encountered by methods incorporated in existing
gencral=purp se production codes.
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Fig. 1 X-Y cell used to Describe Takeuchi's Method
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Fig. 3 X-Y cell used to Describe Askew's and
Filippone's Method
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